Learning Local Metrics and Influential Regions for Classification

نویسندگان

  • Mingzhi Dong
  • Yujiang Wang
  • Xiaochen Yang
  • Jing-Hao Xue
چکیده

The performance of distance-based classifiers heavily depends on the underlying distance metric, so it is valuable to learn a suitable metric from the data. To address the problem of multimodality, it is desirable to learn local metrics. In this short paper, we define a new intuitive distance with local metrics and influential regions, and subsequently propose a novel local metric learning method for distancebased classification. Our key intuition is to partition the metric space into influential regions and a background region, and then regulate the effectiveness of each local metric to be within the related influential regions. We learn local metrics and influential regions to reduce the empirical hinge loss, and regularize the parameters on the basis of a resultant learning bound. Encouraging experimental results are obtained from various public and popular data sets.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Parametric Local Metric Learning for Nearest Neighbor Classification

We study the problem of learning local metrics for nearest neighbor classification. Most previous works on local metric learning learn a number of local unrelated metrics. While this ”independence” approach delivers an increased flexibility its downside is the considerable risk of overfitting. We present a new parametric local metric learning method in which we learn a smooth metric matrix func...

متن کامل

Probabilistic Region Relevance Learning for Content-Based Image Retrieval

Probabilistic feature relevance learning (PFRL) is an effective method for adaptively computing local feature relevance in content-based image retrieval. It computes flexible retrieval metrics for producing neighborhoods that are elongated along less relevant feature dimensions and constricted along most influential ones. Based on the observation that regions in an image have unequal importance...

متن کامل

Combination of Feature Selection and Learning Methods for IoT Data Fusion

In this paper, we propose five data fusion schemes for the Internet of Things (IoT) scenario,which are Relief and Perceptron (Re-P), Relief and Genetic Algorithm Particle Swarm Optimization (Re-GAPSO), Genetic Algorithm and Artificial Neural Network (GA-ANN), Rough and Perceptron (Ro-P)and Rough and GAPSO (Ro-GAPSO). All the schemes consist of four stages, including preprocessingthe data set ba...

متن کامل

Abnormal Functional Brain Network Metrics for Machine Learning Classifier in Depression Patients Identification

Brain network is a widely used tool for identifying abnormal topological properties in whole-brain networks which has been applied to neurological disease diagnosis such as Major Depressive Disorder (MDD). But there is not any study showing that abnormal brain network topological metrics can be used in machine learning classification methods for the identification of MDD patients. In order to f...

متن کامل

Robust object segmentation by adaptive metrics in Generalized LVQ

We investigate the effect of several adaptive metrics in the context of figure-ground segregation, using Generalized LVQ to train a classifier for image regions. Extending the Euclidean metrics towards local matrices of relevance-factors does not only lead to a higher classification accuracy and increased robustness on heterogeneous/noisy data, but also figureground segregation using this adapt...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1802.03452  شماره 

صفحات  -

تاریخ انتشار 2018